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ABSTRACT 

The ordinary least squares (OLS) technique is often used in practice to estimate the 
parameters of a multiple linear regression model with both continuous and categorical 
variables. It has been the most popular technique due to its optimal properties and 
ease of computation. Nevertheless, in the presence of outliers, the OLS can result in 
very poor estimates. Outliers which arise from bad data points may have unduly 
effect on the OLS estimates. The problem is further complicated when both outliers 
and heteroscedasticity or non-constant error variances are present in the data. The 
influence of outliers and heteroscedasticity cannot be removed or reduced by simply 
transforming the data using known transformation such as logarithmic 
transformation. In this paper, we proposed a robust technique to deal with these two 
problems simultaneously.  A robust estimate of scales for each level of categorical 
variables are first estimated by using robust distance S and M (RDSM) estimates. 
Then we determine the weighting scheme for each level of the categorical variables 
and transform the model. The reweighted least squares based on RDSM (RLSRDSM) 
is then applied to the transformed model. The empirical evidence shows that the 
proposed method has reduced the heteroscedastic effect to a greater extent. 
 
Keywords: outliers, heteroscedasticity, robust Distance, RDLI, S/M estimates, 
RDSM. 

 
                           INTRODUCTION    
                                                                                                                                                                
The classical multiple linear regression model is given by:                  

                                  0
1

P

i j ij i

j

y xβ β ε
=

= + +∑                                                              (1)  

 

where          ( )2~ 0,
i

Nε σ           i = 1, 2, ….., n          

 
and the explanatory variables xij are often quantitative. A qualitative 
variable may also be added in the multiple linear regression resulting with 
both continuous and categorical variables in the model. 
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This situation often occurs in the social and economical sciences, 
where the explanatory variables may include gender, ethnic background, 
professional occupation, marital status and so on.      
 

Conventionally we encode such categorical regressors by binary 
dummy variables. If we have m categorical variables with c1, c2, ……., cm 
levels, we can write: 
 

                     yi = β0 + ij
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j
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γ Iil + iε                                                (2) 

where                q = )1(
1

−∑
=

m

k

kC     and     Iil  is either 0 or 1. 

         

The ordinary least squares method (OLS) are often used  in practice to 
estimate the parameters of the model.  Nontheless, the OLS method is very 
sensitive to the presence of outliers.  Outliers which arise from bad data 
points may have drastic effects on the OLS estimates.   In order to rectify 
this problem, a robust method which is not sensitive to outliers is put 
forward.  Hubert and Rousseeuw (1997) introduced the robust distance least 
absolute value (RDL1) method to overcome this problem.  According to 
Cizek (2002) and Maronna and Yohai (1999), RDL1 suffers from several 
problems, such as producing non-singular degenerate solutions.   To 
overcome this problems,  Talib and Midi (2008) proposed a reweighted least 
squares based on RDSM.  The proposed method which we called 
RLSRDSM is better than the RLSRDL1and does not produce any singular 
matrices or degenerate solutions.   

 

There are situations where the violation of constant variance comes 
together with the existence of outliers.  This will make the analysis more 
complicated.  The RLSRDSM cannot handle both problems 
simulataneously.  Hubert and Rousseeuw (1997) proposed a method to deal 
with these problems.  They estimate the coefficients and the error scale by 
applying the robust distance L1 (RDL1) procedure.  The dispersion of 
residuals is then modeled as a function of a two-way structure, and the 
parameters are estimated robustly by the median polish.  This was done 
using the logarithmic transformation on the data.  Finally, they used the 
median of the absolute deviations from the median to determine the weight 
for each observation.  The final estimates are obtained by using weighted 
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least squares (WLS) with the respective weights determined earlier.  
Unfortunately, this techniques may result in some problems, such as  
producing singular matrices or degenerate solutions as given by Maronna 
and Yohai (2000) and Cizek (2002).  On the other hand, Chatterjee and Hadi 
(2006) follow a different approach to deal with the problem of 
heteroscedasticity and outliers, by using the OLS residuals to form the 
weights, that will be used to calculate the WLS estimates.  They proposed a 
two-stages estimation procedure, where in the first stage, they calculate the 
regression using the raw data before transformation, and then used the 
empirical residuals grouped according to the categorical variables levels to 
compute an estimate of residual variance for that levels.  In the second stage, 
an estimate of scale per categorical variables level was calculated and the 
weight is then determined.  The weakness of using the second method for 
estimation, is that the OLS which is non robust is used to calculate the 
weights.  In addition to that, the OLS cannot detect the existence of outliers 
which usually appear with the heteroscedasticity problem.  The consequence 
of using this approach may result in an inflated values of sub variances 
calculated per factor variables level in the second stage of the  procedure.   
In this paper, we propose a method that we call the  weighted  RLSRDSM 
(WRLSRDSM) to estimate the parameters of model (2) when the problems 
of heteroscedasticity and outliers occur together.   

 

THE ROBUST RDL1 ESTIMATOR 

Hubert and Rousseeuw (1997) computed the RDL1 in three stages: 
 

i. Identify leverage points by computing the robust distance via 
minimum volume ellipsoid estimator (MVE). 

ii. Compute the weighted L1 weights based on the robust distance. 
iii. Calculate the estimate of the scale of the residuals 

 
iv. Identify leverage points by computing the robust distance via 

minimum volume ellipsoid estimator (MVE). 
v. Compute the weighted L1 weights based on the robust distance. 

vi. Calculate the estimate of the scale of the residuals 
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Minimum Volume Ellipsoid (MVE) and the Robust Distance (RD) 

Let  X = {X1, X2,..., Xn} be a data set in p-dimensions.  The robust 

location estimator T(X) are found by finding  the center of the smallest 

ellipsoid containing half of X, as well as scatter matrix C(X) given by the 

shape of the ellipsoid. Hubert and Rousseeuw (1997) defined the robust 

distance as follows:   

                          ( ) 1( ( )) ( ) ( ( ))i i iRD x x T X C X x T X
− ′= − −             (3) 

where :-      

             ix  : ( 1ix , 2ix ,…,
ipx )  are the continuous variables.  

             X :  is a data set of explanatory variables with p-dimensions. 

             T(X) :  is the center of the smallest ellipsoid covering half of X. 

             C(X) : is the  shape of the smallest ellipsoid covering half of X. 

 

T(X) and C(X) are consistent for the underlying parameters as verified 
by Davis (1997).  The square of the robust distance (RD(Xi))

2 is 

approximated by 2
Pχ   distribution as n get large if the xi are observational 

(rather than designed) with a multivariate Gaussian distribution.  Hence, 

observations for which RD(Xi) is usually large relative to that distribution 
can be considered as leverage point. 

Based on the robust distance RD(Xi), the positive weights ωi, are given 
by: 

                     
2

min 1,
( )

i

i

p

RD x
ω

 
=  

 
)            ,           i= 1, 2, ..., n         (4) 

 
where:- 
 
RD as given in (3) and p is the expected value of chi-square distribution 
already mentioned (it is approximately the number of independent 
variables). The weighted L1 estimators (βj, γl) of model (2) are found by 
minimizing the sum of the weighted absolute values of the residuals. 
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1

min ( , )
n

i i j l
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rω β γ
=

∑                               (5)    

The solution ( β̂ , γ̂ )  can be computed by using the algorithm of the 

Barrodale and Roberts (1973) and Armstrong and Frome (1977) which treats 
the continuous and discrete (categorical) variables separately. 

Reweighted Least Squares based on RDSM 

Talib and Midi (2008) proposed a reweighted least squares based on 
RDSM. The RDSM is computed in three stages similar to that of Hubert and 
Rousseeuw (1997). A slight modification of the RDL1 is proposed on the 
second stage, the parameter estimates of model (2) are found by minimizing 
the sum of  the weighted S/M of the residuals. 

                                        min∑
=

n

i

ljii r
1

),( γβω                                  (7) 

 
The S/M is a combination of S-estimate for the continuous variables 

and a Huber type M-estimate with least absolute deviation (LAD) start for 
the factor variables.  Finally, on the third stage, the scale of the RDSM is 
estimated by using: 

 

                                        i
i

rmed4826.1ˆ =σ                                   (8) 

where rj is based on the residuals of the RDSM.  The choice of constant 
1.4826 is to make the estimator consistent at gaussian error. 
 

Since the estimate is a weighted L1, by a well known property make σ  
underestimates the error variability and in some situation, one would even 
encounter S ≡ 0!. 

As an alternative, Maronna and Yohai (1999) proposed using : 
 

                                        675.0/ˆ s=σ                                            (9) 

 

where s is the median of the nonnull residuals,  s = med ( 1r , 2r ,……, 1nr )  

for ri ≠ 0. 
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The entire three-stages procedure is called RDSM because the 
procedure combined the robust distances and SM estimator. 
Outliers can be detected  by flagging the observations whose absolute 

standardized residuals
σ̂

ir  are greater than 2.5 .                           (10) 

 
The new parameters is then calculated by applying reweighted least 

squares to the data set of model (2) with weights based on 
σ̂

ir  to increase 

the finite-sample efficiency of the estimators. We refer this estimator as 
RLSRDSM.  In so doing we will be able to employ approximate statistical 
inferences. 
 

A WEIGHTED ROBUST RDSM 

In this section, we propose a weighted robust RLSRDSM to estimate 
the parameters of model (2) when the problems of heteroscedasticity and 
outliers occurs together.  The weights are calculated according to how much 
this part of the data has higher dispersion than the other.  So the weighting 
scheme will be different for different parts of the data (or alternatively 
different levels of categorical variables). To achieve that, a residual scale 
estimate should be calculated for each level of the categorical variable. Then 
each observation in the data for the dependent and independent variables are 
divided by a suitable weight proportional to scale estimate of this part of the 
data, resulting in a model having constant error dispersion. First we assume 
that there is a unique residual variance associated with each of the levels of 

the categorical variable, denoted as ( ) ( ) ( )22

2

2

1 ...,........., σσσ mcandcc .  

Following the idea of the weighted least squares, the regression coefficients 

is estimated by minimizing 
mLevelLevelLevelTotal σσσσ ˆ.............ˆˆˆ

21
++=  , 

where, 
 

                           ( ) .,....,2,1;
1

ˆ
1

2

2 i

n

i

i

j
j lje

c

j

==∑
=

σ              (11) 

 

where j refer to the number of data per categorical variable subgroup, and 
the sum is taken over only those observations that are in the subgroup. The 
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factor 
jc2

1
 as mentioned by Chatterjee and Hadi (2006), is the weights that 

determine how much each observation have influence on the coefficients 
estimation, so the observations with large error variance should have less 
weight (i.e little influence in determining the coefficients).   
 

Chatterjee and Hadi (2006) proposed two-stage estimation procedure . 
In the first stage, the OLS procedure for the original data before 
transformation is performed.  The resulting empirical residuals grouped by 

categorical variables levels is used for the second stage to replace 2
jc  in (11) 

by the estimated 2ˆ
jσ  (i.e 2

jc = 2ˆ
jσ ; where 2ˆ

jσ  is the usual MSE for the 

subgroup data per level).  For the first subgroup of the data according to the 

categorical variable coding, the mean square residual (i.e i

n

i

ii ne /ˆ
1

1

22 ∑
=

=σ  ) 

depends again on the OLS is used, and so on for other subgroups.   
 

In the current study,  a robust estimate of scale for each subgroup is 
first calculated depending on the RDSM residuals for each subgroup as 
follows: 

 

     ( ))(,.......,)(,)(*4826.1ˆ
121

2 RDSMeRDSMeRDSMemedian ni =σ    (12) 

 

where i=1, 2,….,n  is the subgroup index, and n is the number of 

observations per subgroup.  Following Chatterjee and Hadi (2006), 1/ 2ˆ
iσ  

values is used as weights for the data toward homoscedasticity.  Then each 

observation in the overall data will have a specified weight. After 

transforming the data in this way, the influence of outliers (as mentioned 

before) may still exist and the need to estimate the linear model robustly is 

still a serious matter.  Since the model is a combined one, the need to use an 

alternative to OLS exist.  The RDL1 as mentioned before suffers from some 

calculation problems, so using the method of least squares is non robust.  

The need to use more suitable method for such cases arise and the 

RLSRDSM is still a recommended method for the transformed data that will 

give more efficient estimates than other alternatives. 
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This weighting scheme is intuitively justified by arguing that 
observations with the most erratic (having large error variance) should have 
less influence in determining the coefficients. 

 
This way, the transformed model with the constant variance will be: 

 

    jijkjj

m

j

j

n

i

jiijjijk ceccxccy /)/()/(//
11
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==

γαββ       

or,   

ijkjj

m

j

jj

n

i

ijijijkj exy ωγωαωββωω +++= ∑∑
== 11

0                        (13) 

 

where n and m here are the number of continuous and categorical variables 

respectively, also k is the observation index.  i.e. 135y  is the fifth observation 

of the third continuous variable and the first categorical variable. 
 

The resulting residuals ijkjeω  will have a common variance 2σ , and 

the estimated coefficients have all the standard Least Squares properties.  
 

NUMERICAL EXAMPLE 

In this section, a numerical example is presented to assess the 
performance of the weighted RDSM estimator.  The education expenditure 
data (Chatterjee and Hadi (2006)) is used in order to compare the robustness 
of RLSRDSM, RLSRDL1and the OLS estimators.  This data is known to 
have problems of outliers and heteroscedasticity.  We will also examine the 
pattern of their residual plots visually. The data consists of the per capita 
expenditure on public education in a state as dependent variable (y) in 50 
states of the US, along the period between 1965-1975, and three continuous 
variables, the per capita personal income (x1), the number of residents per 
thousand under 18 years of age (x2), and the number of residents per 
thousand residing in urban areas (x3).  The regression model includes in 
addition to the  three continuous variables, two categorical variables, 
introduced as follows: the data are first grouped in four regions : North East 
(NE), North Central (NC), South (S), and West (W).  Data are available for 
three years: 1965, 1970, and 1975.  This way, it contains also two 
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categorical variables, regions (NE, NC, S, and W) and years (1965,1970, 
and 1975).       

 
To model this data, we introduce an indicator variables for the 

categorical regressors. The four regions can be coded with three indicator 
variables (reg1, reg2, and reg3) defined by: regi = 1 if the observation belongs 
to the regi category and  0 otherwise. The time periods of three years are 
coded analogously by two indicator variables  year1 and year2. 

 

With this notation, the following linear model can be formulated: 

 

           ijk

k

kkj

j

j

i

iiijk eyearregxy ++++= ∑∑∑
===

2

1

3

1

3

1
0 γαββ              (14) 

 

For  ;3,2,1=i  ,3,2,1=j  and 2,1=k  , and we assume as done by 

Hubert and Rousseeuw (1997) that the error ijke  to have a unique variance 

(homoscedastic error variance).    

 
For each cell there is only one data point available, so the total number 

of observations equals 150. The OLS, RLSRDL1, and RLSRDSM 

procedures were then applied to this data.  

 
In order to estimate the parameters of model (14), robust methods of 

regression estimation is used in a way that can withstand a positive 

percentage of outliers (y-outliers), x-leverage points, or both. As mentioned 

before, many of the available robust procedures cannot be applied for such a 

mixed (combined) variables model. Then, we tried to focus especially on the 

re-weighted least squares procedures, since it will produce coefficients with 

better finite-sample efficiency than RDL1, S/M, and RDSM methods.  
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Table 1 shows the estimated coefficients, and the scale estimate of each 

method applied to model (14) for the education expenditure data.  Following 

Midi(1999), the value of the percentage variances accounted for, which are 

denoted as scale, 2100R  = 100[1-(residual mean square/total mean square)] 

is also presented. 

 
The RLSRDSM seems to give the optimal estimates and provide the 

best fit to the data, since it has the smallest scale estimate and the values of 
2100R closed to 100%. 

 

TABLE 1 :  The Values of the Parameter Estimates for the Education Expenditure 
Data 

 

LS RLSRDL1 RLSRDSM 
 

Value Std.E Pr(>|t|) Value Std.E Pr(>|t|) Value Std.E Pr(>|t|) 

0β  -64.44 37.80 0.09 -58.93 42.26 0.17 -52.98 37.89 0.16 

1β  0.06 0.01 0.00 0.04 0.01 0.00 0.05 0.01 0.00 

2β  0.23 0.08 0.00 0.27 0.10 0.01 0.24 0.09 0.00 

3β  -0.07 0.02 0.00 -0.02 0.012 0.34 -0.01 0.02 0.64 

(region1)

1α  
2.10 4.00 0.60 1.30 3.10 0.68 -0.26 2.85 0.93 

(region2)

2α  

-0.51 2.31 0.83 -0.61 1.73 0.72 0.91 1.55 0.56 

(region2)

3α  

8.51 1.52 0.00 6.82 1.24 0.00 7.15 1.11 0.00 

(year1) 1γ  21.97 4.99 0.00 28.41 3.80 0.00 27.28 3.43 0.00 

(year2) 2γ  -64.44 4.90 0.11 17.23 3.85 0.00 16.62 3.55 0.00 

S(e) 

2100R  

30.55 

89.39 

22.5 

92.9185 

19.89 

94.41 
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We also performed diagnostics to the data to detect if there is any 
deviation from the model assumptions.  The Normal Q-Q plot of Fig. 1 
reveals a non-normality of the error terms for the three methods.    

 

 

 
 
 
 

 
 
 
 

 
 

 
 
 

 
 

Figure 1: Normal QQ-Plot of Residuals 
 

 

 

 

 

 

 

 

 

Figure 2: Residuals vs. Fitted Values 
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Heteroscedasticity problem as expected seems to be serious as shown 
in Fig. 2.  The funnel shape in Fig. 2 seems more clear, revealing that the 
data suffer from the problem  of non-constant error variance.   
 

Figure 3 shows a scatter plot of standardized residuals versus each of 
the three continuous predictor variables. A serious relationship appear with 
the values of per capita personal income x1, where the residual variance 
increase with the values of x1. This non-constancy as we mentioned earlier 
can be reduced by a suitable transformation of the continuous variables. 
Smaller relation detected for the residuals with the number of residents per 
thousand residing in urban areas X3, the relation with X2 seems to be 
decreasing, where the residual variance decrease with the values of the 
number of residents per thousand under 18 years of age X2. Similar results 
can be found in Chatterjee and Hadi (2006), but the analysis is for year 1975 
only, so the relation between the standardized residuals with X2 and X3 have 
not been detected clearly, only with X1.   
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Figure 3: Plot of standardized Residuals Vs Each of the Row Variables 
 

The state Alaska (AK) which appears in Fig. 3 separated from the bulk 
of the data, while less separation appear for states Alabama (AL) and 
Kentucky (KY) for year 1965.  By looking at Figure 1-3, it is very obvious 
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that this data suffer from non-normality, heteroscedasticity and having 
outliers. 
 

WRLSRDSM TRANSFORMATION TO HOMOGENIZE THE 

ERROR DISPERSION 

After detecting that the residuals dispersion is non homogeneous, this 
problem should be treated carefully and it's influence should be lessen.  This 
can be done by using a suitable weighting scheme as was discussed earlier.  
The weights can reduce the non constant dispersion of  the residuals with the 
fitted values and can be used to calculate a weighted least squares.  That will 
produce a results with constant error variance. Parameters of model (2) 
should be estimated using a weighted version of the model with weights 
calculated based on how much each level of the data has higher dispersion 
than the other, so the weighting scheme will be different for different levels 
of the data (different levels of the categorical variables). To achieve this, we 
calculate a residual scale estimate per year and per region, then divide each 
observation in the data (for the dependent and independent variables) by a 
suitable weights proportional to the scale estimate of each part of data 
resulting in a model having constant error dispersion.  First it should assume 
that there is a unique residual variance associated with each of the four 

regions, denoted as ( ) ( ) ( ) ( )2

4

2

3

2

2

2

1 ,, σσσσ candccc .  By using the concept 

of weighted least squares, the regression coefficients is estimated by 

minimizing WSNCNEregion σσσσσ ˆˆˆˆˆ +++=  , where, 

                       ( ) .4,3,2,1;
1

ˆ
1

2

2
==∑

=

je
c

jn

i

i

j

jσ                        (15) 

In this way, the transformed model with the constant variance will be: 

jijk
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 or,   
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3

1
0

         (16) 

 

The resulting residuals ijkjeω  will have a common variance 2σ , and 

the estimated coefficients have all the standard least squares properties.  



Habshah Midi and Bashar A.Talib 

 

 
Malaysian Journal of Mathematical Sciences 

38 

Using (12), the robust estimate of scale for the four regions depending 
on the RDSM residuals is given as follows: 
 

))(,.......)(,)((*4826.1ˆ 921
2

1965 RDSMeRDSMeRDSMemedianNE =σ   (17) 

 
similarly for other three regions along the three years (i.e 1965, 1970, and 
1975).  The estimated region and year scale is given in Table 2. The 
parameters and scale estimates of the transformed data are presented in 
Table 3. The WRLSRDSM again gives the smallest scale estimate, since the 
influence of outliers is reduced by using the weighting scheme, which result 
in estimates that represent the bulk of data. 

 
 

TABLE 2: The residual scale per region and per year 
 

 ˆ
ij

σ (using RDSM residuals) 

1965 1970 1975 

9.973647 36.15582 44.83644 

12.19702 30.08506 52.14932 

9.696966 17.85598 12.4906 

 

NE 

NC 

S 

W 
26.50927 33.24502 27.30018 

 

 
TABLE 3:  The Parameter Estimates for Education Expenditure after 

Transformation 
 

WLS WRLSRDL1 WRLSRDSM 
 

Value Std.E Pr(>|t|) Value Std.E Pr(>|t|) Value Std.E Pr(>|t|) 

0β  0.23 0.35 0.52 -0.18 0.32 0.57 0.22 0.25 0.38 

1β  0.06 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 

2β  0.11 0.03 0.00 0.25 0.04 0.00 0.20 0.03 0.00 

3β  -0.04 0.01 0.01 -0.03 0.01 0.02 -0.03 0.01 0.00 

(region1) 1α  -40.96 7.46 0.00 
-

36.57 
6.20 0.00 

-
28.60 

5.04 0.00 
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-
34.39 

6.61 0.00 
-
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(year1) 1γ  -33.57 9.39 0.00 
-

71.10 
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-
58.60 

7.97 0.00 

(year2) 2γ  -1.90 7.91 0.81 
-

17.69 
7.00 0.01 

-
16.16 

6.04 0.01 

S(e) 

 

1.188 

 

0.9755 

 

0.7431 

 

2100R  

 
 
 

0.9351 
0.9559 

 

0.9660 

 

 

Comparing Table 1 and 3, we can see that by doing the transformation to the 

data, the scale and the 2100R  has decreased and increased respectively.  
Again the WRLSRDSM provide the best fit and the most efficient method.  
Fig. 4 through 6 show the residuals and data dispersion after transformation.  
It can be seen from Figure 4 and 5 that the spread of residuals has decreased 
and the residuals dispersion reasonably look constants.  
 

 
 
 
 
 
 

 
 
 

 
   

 
 
 
 
 

 
 

Figure 4: Residuals Vs. Fitted Values for the Transformed Data 
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Figure 5: Plot of eis versus Each of the Transformed Predictor Variable 

 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 

Figure 6: Normal QQ-Plot of residuals 
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Figure 6 of Normal Q-Q plot, again reveals  the existence of outliers, 

and the plot reasonably more straight than Figure 4 of  the original data. 
 

Clearly from the example of education data and a few more examples 
not included here due to space constraint, suggest that by performing 
transformation,  will reasonably stabilize the error variances.  (All computer 
codes and results can be requested from the authors).   We have not pursued 
the analysis of the example to a final conclusion, but a reasonable 
interpretation up to this point is that the WRLSRDSM is the least effected 
estimator by the combined problem of outliers and heteroscedastic followed 
by WRLSRDL1 and WOLS.  The RLSRDSM, RLSRDL1 and OLS cannot 
cope with these problems. 
 

SIMULATION STUDY 

In order to assess the robustness of the six estimators, that is the OLS, 
RLSRDL1, RLSRDSM, WOLS, WRLSRDL1 and WRLSRDSM, a 
simulation study has been performed for two models with different 
dimensions, one with two continuous and two categorical variables and 
another model with three continuous and four ategorical variables. In fact we 
have performed many simulation scenarios and due to space constraints, we 
only report the results of the two models.  The results of other models 
dimensions are consistent and the computer codes can be requested from the 
authors.  Following Rousseeuw and Leroy (2003) simulation study, each of 

the continuous variable is generated such that  )100,0(~ NX i .  The models 

with 2 and 3 continuous variables respectively are as follows; 
 

                          iy =β0+

2

1
j ij

j

xβ
=

∑ +

2

1
l

l

γ
=

∑ Iil+ iε                                                                   

 

                         iy =β0+

3

1
j ij

j

xβ
=

∑ +∑
=

4

1l

lγ Iil+ iε                                                                           

 

where 0β  is the intercept, jβ  with j = 1,2,…,p are the coefficients of the 

linear model, i = 1,2,…,n is the index, and 
iε  is the error term.    
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To explain the way of generating heteroscedastic errors, we first 
assume that there is no specific known patterns of the common 

heteroscedasticity (i.e when )(,, 22222
ieieiee Eyxx

i
σσσσ = ).  According to 

that, an increasing error with respect to increasing y values is generated, by 
giving different dispersion (increasing or decreasing) along the sample size 
n.  For the case of sample size equal to 100 (n=100) this can be done by 
writing the following code in S-PLUS: 
 

 

 S1 <- rnorm(20,0,1) 
 S2 <- rnorm(20,0,3) 
 S3 <- rnorm(20,0,5) 
 S4 <- rnorm(20,0,7) 
 S5 <- rnorm(20,0,9) 
 ERROR <- c(S1,S2,S3,S4,S5) 
 Y <- sort(Y) 
 

 

As shown in the code above the standard deviation of the error is 
increasing per 20 values (1,3,5,7, then 9), and the y values is cited in 
ascending way (sort command in S-PLUS means to arrange the variable 
values ascendingly), and then having increasing error variance with respect 
to increased y, which is the general form of the heteroscedasticity problem. 

 
The 4 categorical variables have been generated as factor variable with 

five levels resulting with four binary dummy variables. The true parameter 
values of the above model are such that: 
 

14321543210 ========== γγγγββββββ as suggested by 

Rousseeuw and Leroy (2003).   We consider sample of size n= 24 and 
n=100 for the first and second model, respectively.   For simplicity, the 
sample with n=24 is contaminated with 1,2, and 4 outliers which means 
about 4.2%, 8.3% and 16.7% outliers.  The second set of data with n= 100 is 
contaminated with 5%, 10% and 20% outliers. 
 

We consider three cases of generated data. The first case which is just 
described is the data without outliers but have heteroscedastic errors and 
referred as XYNORMAL.  This case is just described.   In the second  and 
the third case, we generated  outliers in the y (YOUTLIER) and x directions 
(XLEVERAGE).  We deleted certain percentage of good observations as in 
the first case  and replaced with y ouliers and x outliers  for the second and 
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the third case respectively.  The y outliers were generated by ~ (10,1)iY N .  

The leverage points were generated as ~ (100,100)iX N .   The OLS, 

RLSRDL1, and RLSRDSM (no transformation) and the WOLS, 
WRLSRDL1, and WRLSRDSM (transformation) were then applied to the 
simulated data.  Several performance and summary measures over the two-
hundred iterations (m=200) were computed: 

 

The Mean Estimated Value : 

                          MEV= jβ =
m

1
∑

=

m

k

k

j

1

)(β̂                                                                            

Variance of jβ̂ : 

 

                          Var( jβ̂ )=
m

1
∑

=

m

k

k

j

1

)(ˆ(β - jβ )2 

 

The Bias resulting from using jβ̂  to estimate jβ :   

 

                          ( jβ - jβ )                    

The Mean Square Error (MSE ( jβ )) 

                          MSE( jβ̂ )=( jβ - jβ )2+
m

1
∑

=

m

k

k

j

1

)(ˆ(β - jβ )2                                                

The Root Mean Square Error (RMSE) is given by the square root of the 

MSE, i.e.  

                        

                RMSE=[MSE( jβ̂ )]1/2       

 

Table 4-5 present only the RMSE of the parameter estimates of the 
models.  The RMSE of the weighted estimates are in parenthesis.  Other 
measures are not included because of space limitations.   By inspecting 
Tables 4-5, the following conclusions can be made regarding the point 
estimation.  We can see that by using the transformation technique has 
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improved the accuracy of the estimates.  This is supported by looking at the 
RMSEs of the weighted estimator (WOLS, WRLSRDL1, WRLSRDSM) 
which are in most cases lower than the unweighted estimator (OLS, 
RLSRDL1, RLSRDSM).  In the well behaved case, i.e where there are no 
outliers but heteroscedastic errors,  the three weighted methods are closed to 
each other. 
 

It is interesting to note that the presence of outliers either in the y or x 
directions have an effect on  the parameter estimates of the categorical 
variables.  The RMSE of the WRLSRDSM and WRLSRDL1 are reasonably 
smaller than the WOLS as the percentages of outliers increases.  The 
RMSEs of the WRLSRDSM estimator is consistently slightly lower than the 
WRLSRDL1, although in a few cases the difference ia relatively small.   
Although the WRLSRDL1 appeared to be performing quite close to the 
WRLSRDSM, its problem of generating singular matrices and degenerate 
solutions limits its applicability.  WOLS took the least computation time, 
however, it can become highly unstable and sometimes no convergence is 
obtained when there are outliers in the data.  Naturally, the WRLSRDSM is 
preferred over the WRLSRDL1 and WOLS because its RMSEs are 
relatively slightly smaller than the other two estimates and numerically 
stable. 

 
TABLE 4: RMSE values for model with 2Continuous, 2Categorical, and    

heteroscedastic errors; n=24, and m=200* 
 

 XYNORMAL 

 β0 β1 β2 β3 β4 
OLS 0.3219505 1.0365071 0.9824853 1.0379773 0.8775837 
WOLS (0.2261254) (1.0100297) (1.0136051) (0.9685937) (0.5580328) 

RLSRDL1 0.2853840 1.0030671 0.9993191 0.7482006 0.6157523 
WRLSRDL1 (0.2213842) (1.0049717) (0.9924568) (0.7275580) (0.3952149) 

RLSRDSM 0.2907211 0.9758210 1.0227607 0.6687230 0.5078957 
WRLSRDSM (0.1444898) (0.9827447) (1.0253213) (0.4672907) (0.1809026) 

 4.2% YOUTLIER 

OLS 0.09450523 1.05435718 0.97526165 1.06016358 1.16920885 
WOLS (0.1224686) (1.0045435) (1.0064211) (1.1097743) (0.1874173) 

RLSRDL1 0.04589779 0.94282642 1.02901930 0.80152964 0.74463686 
WRLSRDL1 (0.06391192) (0.96656835) (0.99548353) (0.95843551) (0.05262141) 

RLSRDSM 0.09854846 0.96907764 1.03990054 0.72502684 0.60945517 
WRLSRDSM (0.20010879) (0.96692874) (1.03024972) (0.46890136) (0.01598349) 

 4.2% XLEVERAGE 

OLS 0.4251494 0.9878074 1.0007966 1.1834390 0.9269275 
WOLS (0.5318573) (1.0135423) (1.0221592) (0.6609516) (0.4569843) 
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RLSRDL1 0.3958114 1.0186832 0.9901230 0.9497745 0.7060410 
WRLSRDL1 (0.4243471) (1.0096969) (0.9846131) (0.5132785) (0.3169971) 

RLSRDSM 0.4045084 0.9849534 1.0216577 0.8445789 0.5716125 

WRLSRDSM (0.003537901) (0.995618697) (1.030125798) (0.259302463) (0.114590851) 

 8.3% YOUTLIER 

OLS 0.5071115 1.0520870 0.9763156 1.1369068 1.4735758 
WOLS (0.01271080) (1.00087868) (1.00891104) (1.17059493) (0.07782464) 

RLSRDL1 0.3132786 1.0092642 1.0260427 0.9326691 1.0526465 
WRLSRDL1 (0.01051742) (0.99009534) (0.99989836) (0.99033546) (0.04693896) 

RLSRDSM 0.2534361 1.0316115 1.0616681 0.8390891 0.8960345 
WRLSRDSM (0.20616608) (0.99095943) (1.00381509) (0.43418586) (0.07721086) 

 8.3% XLEVERAGE 

OLS 0.4251494 0.9878074 1.0007966 1.1834390 0.9269275 
WOLS (0.6534483) (1.0188099) (1.0421668) (0.7754247) (0.5231300) 

RLSRDL1 0.3958114 1.0186832 0.9901230 0.9497745 0.7060410 
WRLSRDL1 (0.5200938) (0.9952145) (1.0145323) (0.5845536) (0.3649581) 

RLSRDSM 0.2907211 0.9758210 1.0227607 0.6687230 0.5078957 

WRLSRDSM (0.05720748) (0.95839936) (1.06936744) (0.29090268) (0.09499025) 

 16.7% YOUTLIER 

OLS 1.3302444 1.0604430 0.9833051 1.3335684 2.0216485 

WOLS (0.00680235) (1.02146480) (0.97617022) (1.34229448) (0.02373777) 

RLSRDL1 1.493143 1.057654 1.008476 1.141872 1.995603 

WRLSRDL1 (0.2002472) (1.0104134) (1.0230489) (1.1759683) (0.1092345) 

RLSRDSM 1.577481 1.050906 1.010583 1.030340 1.981174 

WRLSRDSM (0.017206524) (1.017388736) (0.998205008) (0.455401035) (0.007011435) 

 16.7% XLEVERAGE 

OLS 0.2895261 1.0020038 1.0130098 1.0035275 0.8591769 

WOLS (0.4594075) (0.9989241) (1.0317129) (0.2935740) (0.4997330) 

RLSRDL1 0.3254998 0.9927551 1.0232803 0.9029485 0.7328438 

WRLSRDL1 (0.4239862) (1.0375798) (0.8805711) (0.1125395) (0.3549119) 

RLSRDSM 0.4580334 0.9725833 1.0016797 0.8611002 0.5794663 

WRLSRDSM (0.0669163) (0.9512277) (0.9865050) (0.1365878) (0.1917950) 
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TABLE 5: RMSE values for model with 3Continuous,4Categorical, and 
heteroscedastic errors; n=100, and m=200 

 XYNORMAL 

 β0 β1 β2 β3 β4 β5 β6 β7 

OLS 0.2141440 1.0096185 1.0095895 1.0067505 1.9833493 0.7943038 0.4676668 0.9940670 

WOLS (0.08614949) (0.98912473) (0.99586898 (0.99769769) (0.50171628 (0.2327756 (0.20568125) (0.36817810

RLSRDL1 0.2457314 0.9830858 0.9932937 0.9983169 1.5081125 0.6109553 0.3627980 0.7116964 

WRLSRDL1 (0.07971148) (1.00416061) (1.00049142 (0.98024817) (0.68473185 (0.1288603 (0.12435075) (0.48572436

RLSRDSM 0.2267764 0.9951286 0.9870214 0.9975454 1.0502966 0.4847137 0.3122431 0.5256017 

WRLSRDSM (0.19403426) ( 0.99458410) (1.00182025 (0.99384200) (0.40784234 (0.1467616 (0.08798237) (0.34338733

 5% YOUTLIER 

OLS 0.2384250 0.9844007 0.9887775 0.9898786 1.9251761 0.7575258 0.5039839 1.0722328 

WOLS (0.1307639) (0.9888480) (1.0010005) (0.9877058) (0.3862255) (0.3163713) (0.1362681) (0.3347374

RLSRDL1 0.3446135 0.9870919 0.9940144 0.9969406 1.3503974 0.5549136 0.3739748 0.8931730 

WRLSRDL1 (0.16373882) (0.99695022) (1.00450898 (0.98956512) (0.59826756 (0.21104501 (0.04933537 (0.4157777

RLSRDSM 0.3962422 1.0020649 0.9901455 0.9990181 0.9688213 0.4438252 0.3476502 0.7545313 

WRLSRDSM (0.02804424) (0.99304827) (1.00765283 (0.98710577) (0.35476146 (0.19289969 (0.01641317 (0.3174565

 5% XLEVERAGE 

OLS 0.2680368 0.9966962 0.9877413 0.9917072 2.0363501 0.8120916 0.4754146 0.9778015 

WOLS (0.2765129) (0.9872064) (0.9997386) (0.9952693) (0.4949738) (0.2336494) (0.2042150) (0.5484580) 

RLSRDL1 0.2133112 0.9713200 1.0002737 0.9984413 1.5087571 0.6080243 0.3623398 0.7428572 

WRLSRDL1 (0.2509744) (0.9995488) (0.9924119) (0.9841617) (0.6808158) (0.1401733) (0.1218643) (0.6378666) 

RLSRDSM 0.2116992 0.9938584 0.9850635 0.9961756 1.0478086 0.4818860 0.3109402 0.5388270 

WRLSRDSM (0.32455395) (0.99192502) (1.00062812
) 

(0.99785241) (0.42198567
) 

(0.13901502
) 

(0.09288285
) 

(0.50501703) 

 10% YOUTLIER 

OLS 0.7273686 0.9828681 0.9870513 0.9956904 1.9220805 0.7666989 0.5962815 1.2097823 

WOLS (0.41822160) (0.99763255) (0.99903695 (0.99117712) (0.26801334 (0.35862937 (0.02353971 (0.18549406) 

RLSRDL1 0.8722677 0.9930408 0.9943947 1.0012479 1.3406568 0.5561043 0.4553933 1.0650064 

WRLSRDL1 (0.46495494) (0.98745497) (0.98323945 (1.00053198) (0.47759484 (0.25535697 (0.05615224 (0.25626898) 

RLSRDSM 0.9751119 0.9956395 0.9867671 0.9895575 0.9224134 0.4374482 0.4250247 0.9670837 

WRLSRDSM (0.34329753) (0.99734153) (0.99887757 (0.98552708) (0.29447102 (0.22735659 (0.07437805 (0.18193830) 

 10% XLEVERAGE 

OLS 0.2833100 0.9975232 0.9877696 0.9992115 2.0371396 0.8039088 0.4682698 0.9781895 

WOLS (0.40523364) (0.98774360 (0.99697321) (0.99465943) (0.50608647 (0.18718262 (0.08928638 (0.51055000) 

RLSRDL1 0.2478631 0.9699690 0.9961517 1.0013570 1.4954739 0.5705492 0.3517814 0.7530187 

WRLSRDL1 (0.382911606 )(0.9976246 (1.008068278 )(0.98883257 )(0.7062737 (0.09331587 )(0.0076151 )(0.60214884

RLSRDSM 0.2466741 0.9919301 0.9900075 1.0013925 1.0585435 0.4625009 0.3042554 0.5334607 

WRLSRDSM (0.424669980 )(0.9931032 )(0.99935883) (0.994705044 )(0.4583859 )(0.0909581 (0.00638466 (0.494191772

 20% YOUTLIER 

OLS 1.7283910 0.9806078 0.9863155 0.9869153 2.0609726 0.9615479 1.0612274 1.3246827 

WOLS (1.26811492)) (0.99968122 (0.98738579) (0.99554006) (0.07510197 (0.38361189 (0.06534709 (0.40777977) 
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RLSRDL1 1.8751124 0.9852952 0.9856361 1.0022024 1.4922844 0.7325244 0.9679926 1.1690873 

WRLSRDL1 (1.2965338) (0.9863553) (0.9927975) (0.9901475) (0.2745598) (0.2756073) (0.1117486) (0.3121012) 

RLSRDSM 2.0009517 0.9918789 0.9843991 0.9879310 1.0887448 0.6403657 0.8825399 1.1320573 

WRLSRDSM (1.0765790) (0.9927046) (0.9964525) (0.9861749) (0.1561043) (0.2365982) (0.1248226) (0.2799626) 

 20% XLEVERAGE 

OLS 0.2381965 1.0009539 0.9912117 0.9970098 2.0324146 0.8055382 0.4739848 0.9878226 

WOLS (0.26609544) (0.98844792 (0.99775128) (0.99494832) (0.56879079 (0.09235665 (0.03113616 (0.54419863) 

RLSRDL1 0.1989392 0.9897655 0.9964881 0.9865932 1.3201804 0.5344882 0.3326646 0.7382679 

WRLSRDL1 (0.25018521) (0.98789663 (1.01197487) (0.97953362) (0.73974697 (0.02241450 (0.03686682 (0.63062556) 

RLSRDSM 0.1508558 0.9991801 0.9904307 0.9992685 1.0394173 0.4521225 0.2887934 0.6211943 

WRLSRDSM (0.30714751) (0.98484006 (0.99013302) (0.98714460) (0.65167013 (0.02453643 (0.03332308 (0.54438447) 

 

CONCLUSION 

The unweighted estimates are not efficient in the situation of the 
heteroscedastic errors. The empirical study shows that the weighting scheme 
has improved the accuracy of the three estimates.  It appears that the 
performances of the three methods are equally good in a well behaved data, 
data with heteroscedastic errors without outliers.  The WOLS method is not 
robust where outliers are present in the data.  The WRLSRDSM is slightly 
better than WRLSRDL1 and sometimes their performances are 
indistinguishable.  Nevertheless the WRLSRDL1  posed certain 
computational problems such as singular matrix and degenerate solution 
through it's many null errors produced.   The WRLSRDSM does not face 
any computational problem.  The result of this preliminary studies suggest 
that the WRLSRDSM is the best choice for handling problems of 
heteroscedasticity and outliers in the data set. 
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